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Abstract. An analysis of 16O-AgBr interaction data at 60A GeV in terms of factorial correlators is pre-
sented. The correlated moments are found to increase with decreasing bin-bin separation D, following a
power law within the region D ≤ 1. The data are also consistent with the dimension-independent scaling
relation proposed by Seixas.

PACS. 24.60.Ky Fluctuation phenomena

Recently, much attention has centered around the study
of non-statistical fluctuations in pionisation at high and
ultra-high energy nuclear collisions. The concept of in-
termittency was introduced in the field of multi-particle
production by Bialas and Peschanski [1], from the theory
of turbulence where it is used to measure the effects of
bursts in a turbulent system. Intermittency is signaled by
the power law behaviour of the scaled factorial moments
with increasing spatial resolution of the particle detection
procedure. The unique feature of this moment method is
that it can detect and characterize the dynamical density
fluctuations in particle spectra eliminating the statistical
fluctuation which is always present in events with finite
multiplicity [1]. The strength of the fluctuation is char-
acterized by the intermittency exponent φ which may be
obtained from the relation: (factorial moment) ∝ (phase-
space size)−φ. In the field of “intermittency” study analy-
sis of various experimental data [2–11] has been performed
using the Scaled Factorial Moments (SFMs) [1] as the tool
in different phase space variables. Such tremendous enthu-
siasm in studying intermittency effect stems from one ma-
jor curiosity about the possible formation of quark gluon
plasma (QGP) in nuclear collision. But later on it is found
that different data support different interpretations. So a
more discriminative information is needed experimentally.

It may be mentioned here that the other possible ap-
proach could be the test for intermittency in terms of
Factorial Correlators (FCs), as suggested by Bialas and
Peschanski [1]. Further the FCs not only measure the non-
statistical fluctuation but also correlate the fluctuations in
different regions of phase space, providing additional in-
formation. However, analysis of data in terms of FCs is
relatively scarce. This paper analyses 16O-AgBr interac-
tion data at 60A GeV in the framework of the correlated
factorial moments in pseudorapidity phase space using nu-

clear emulsion technique. It would be rather interesting to
see what the data reveal in terms of FCs, confronting in
particular the most discussed α-model which is described
below:

α-model [1] describes each multiparticle event as a se-
ries of cascading steps starting from some initial phase
space interval ∆ and dividing it into smaller ones. In a
single step, s, each of the current intervals of size δ(s) is
divided into λ smaller ones δ(s+1) = δ(s)/λ. The particle
density in a bin at step, s, is obtained by multiplying the
corresponding density in the step (s − 1) by a particu-
lar value of random “enhancement/suppression” variable
W with the probability distribution r(W ) obeying con-
straints

〈W 〉 =
∫

r(W )WdW = 1 (1)

W is generated independently for each step and for each
branch. The highest resolution δ is achieved after n steps,
where ∆/δ = λn = M is the total number of bins into
which the whole interval ∆ has been divided. The mo-
ments of the density ρm in the m-th bin have a power law
dependence on the resolution δ:

〈ρq
m〉 ∼ (∆/δ)φq where φq are the intermittency expo-

nents:
φq = ln〈W q〉/ lnλ,

Now, the correlated moments or the FCs involve more
than one part or interval at a given step, providing cor-
relations between the intervals. These FCs can also be
expressed as a function of the random W ’s. The α-model
predicts for FCs (i) a power law increase with decreasing
distance between the intervals and (ii) the independence
of FCs with the size of the intervals. The nuclear emul-
sion provides a rather convenient method of studying a
high energy interaction for its (i) efficiency as a detector,
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(ii) high spatial resolution and (iii) 4π geometry cover-
age. It thus helps in studying fluctuations even in very
small pseudorapidity intervals, detecting all the produced
charged particles with such fine resolution.

A stack of G5 nuclear emulsion plates horizontally ex-
posed to an 16O beam, having an average beam energy of
60 GeV per nucleon at CERN SPS has been used in this
work. Leitz metalloplan microscopes provided with semi-
automatic scanning stage are used to scan the plates, using
objectives 10× in conjunction with a 10× ocular lens. The
scanning is done by independent observers to increase the
scanning efficiency which turns out to be 98%. Criteria to
select the events are:

(a) The beam track did not exceed 3◦ from the mean beam
direction in the pellicle.

(b) Events having interactions within 20 µm from the top
or bottom surface of the pellicle are rejected.

(c) The incident beam tracks are followed in the backward
direction to ensure that selected events did not include
interactions from the secondary tracks of other inter-
actions, the latter events are removed from the sample.

Following the above selection procedure we have cho-
sen 250 primary events of 16O-AgBr interactions at
60A GeV. All the tracks are classified as usual [12]:

(i) The target fragments with ionization > 1.4I0 (I0 is
the plateau ionization) produce either black or grey tracks.
The black tracks with range <3 mm represent target evap-
oration particles (the light nuclei evaporated from the tar-
get) of β < 0.3, singly or multiply charged particles.

(ii) The grey tracks with a range ≥3 mm and having
velocity 0.7 ≥ β ≥ 0.3 are mainly images of fast target
recoil protons of the energy range up to 400 MeV.

(iii) The relativistic shower tracks with ionization
< 1.4I0 are mainly produced by pions and are not gen-
erally confined within the emulsion pellicle. They are be-
lieved to carry important information about the nuclear
reaction dynamics.

(iv) The projectile fragments formed a different class
of tracks with constant ionization, long range and small
emission angle.

To ensure the target in the emulsion to be Ag/Br, only
such events are chosen in which the number of heavily ion-
izing tracks exceed eight. The heavily ionizing particles of
types (i) and (ii) belong to the target nucleus and those
of type (iv) to the projectile nucleus. Particles of type
(iii) are produced in the final state of the interaction. To
distinguish between the single charged produced particles
(pions) and projectile carrying same charge the following
procedure has been adopted: the projectile fragments are
expected to fall inside a cone of semivertical angle θc [13]
with the direction of the projectile, where θc is equal to
0.2/pbeam, pbeam (GeV/c) is the incident beam momen-
tum per nucleon, we checked emission angle of all shower
tracks and excluded those with emission angle less than θc.
In this way the singly charged projectile fragments were
eliminated from the sample. The spatial angle of emission
(θ), in the laboratory frame, of all the produced particles,
is measured by taking the space co-ordinates (x, y, z) of

a point on the track, another point on the incident beam
and the production point by using oil immersion objec-
tives (100× in conjunction with a 10× ocular lens). The
variable pseudorapidity is obtained from the emission an-
gle (θ) by the relation, η = − ln(tan θ/2).

In terms of the experimental parameters, the SFMs
which measure local density fluctuations in pseudorapidity
phase space, are defined as

〈Fq〉 = Mq−1
M∑

j=1

〈nj(nj − 1) . . . (nj − q + 1)〉/〈nj〉q, (2)

where M is the number of bins into which the total pseu-
dorapidity range ∆η has been divided. δη is the width of
each pseudorapidity bin. nj is the multplicity in the j-th
bin. 〈 〉 denotes the average over all events and q the or-
der of moments. The presence of intermittency gives the
power law,

〈Fq〉 ∝ (∆η/δη)ϕq, (3)

where ϕq is defined as the “intermittency exponent” of
the q-th order, and Fq is a measure of local density fluc-
tuations in pseudo rapidity phase space.

FCs on the other hand, describe the correlation among
local fluctuation in different regions of phase space and is
defined as [14]

F k,l
ij (δη) =

〈nk(nk − 1) . . . (nk − i+ 1)nl(nl − 1) . . . (nl − j + 1)〉
〈nk(nk − 1) . . . (nk − i+ 1)〉〈nl(nl − 1) . . . (nl − j + 1)〉

(4)

where nk and nl are the multiplicity in k-th and i-th bins
respectively. The factorial correlators are calculated for
each combination of the k and l for a particular δη and
averaged for all possible bin-bin combinations with a given
separation D = dδη, where d = |k − l|, of the k-th and
l-th bins. We have however calculated the average for all
bin combinations with a given distance D, to get

Cij(D, δη)

= 1/[2(M − d)]

[
M−d∑
k=1

F k,k+d
ij (δη) +

M−d∑
l=1

F l+d,l
ij (δη)

]

= 1/[2(M − d)]
M−d∑
k=1

[
F k,k+d

ij (δη) + F k,k+d
ji (δη)

]
(5)

where Fij(k, l, δη) = Fji(l, k, δη). The correlators, Cij , can
now be studied as a function of bin-bin separation D and
bin with δη. According to the α-model [1], the intermittent
behaviour of pionization implies that 〈Cij〉 would depend
on the bin-bin separation D, following a power law

Cij ∝ D−φij (6)

and that it should be independent of δη. However, it has
been shown in [14] that this δη-independence of FCs is
a common feature of any model dealing with short range
correlation functions.
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Table 1. The slope values of best fits from the plot of lnCij versus − lnD in the region D ≤ 1 for different bin widths

Order of Slope (φij) for D ≤ 1
the
correlators

ij δη = 0.1 δη = 0.13 δη = 0.2 δη = 0.4
(0.1 ≤ D ≤ 1.0) (0.13 ≤ D ≤ 0.93) (0.2 ≤ D ≤ 1.0) (0.4 ≤ D ≤ 0.8)

11 0.218± 0.018 0.324± 0.008 0.342± 0.034 0.388± 0.004
21 0.476± 0.008 0.511± 0.019 0.527± 0.021 0.545± 0.005
31 0.560± 0.015 0.574± 0.035 0.640± 0.009 0.662± 0.007
22 0.754± 0.028 0.766± 0.035 0.847± 0.022 0.944± 0.008
32 0.898± 0.036 0.905± 0.056 1.019± 0.046 1.053± 0.009
33 1.061± 0.039 1.081± 0.066 1.220± 0.086 1.274± 0.011

Fig. 1. The variation of lnCij with − lnD for (a) δη = 0.1
and (b) δη = 0.2

Fig. 2. Log − log plot of factorial correlators Cij versus inverse
bin widths (1/δη) revealing the independence of Cij on the bin
size for (a) D = 0.4 and (b) D = 0.8

We have performed our analysis in the pseudorapidity
space of width ∆η = 4.0 around the peak of the distribu-
tion. The power law (6) dependence has been studied for
four different values of the bin size (δη = ∆η/M = 0.4,
0.2, 0.13 and 0.1) by choosing M = 10, 20, 30 and 40 re-
spectively. The variation of lnCij as a function of − lnD
has been shown in Fig. 1(a–b) for δη = 0.1 and 0.2. The
error bars indicate the standard statistical errors of the Fij

values. For clarity, error bars are shown at few points. In
each case, lnCij is found to increase with − lnD and the
validity of the power law (6) is also observed. The plots
exhibit that they are linear only in restricted regions of
D-values namely, D ≤ 1.0. Similar behaviour have also
been observed for δη = 0.13 and 0.4. So, linear fits have

been performed only for selected ragions of D values. The
selected D ranges are 0.4 ≤ D ≤ 0.8, 0.2 ≤ D ≤ 1.0,
0.13 ≤ D ≤ 0.93, and 0.1 ≤ D ≤ 1.0 for bin widths
0.4, 0.2, 0.13, and 0.1, respectively. Table 1 shows a sys-
tematic decrease in the slopes with decreasing bin size for
any particular order (i × j). A rise in the slope values for
increasing order of moments for a given δη is also evident.

In Fig. 2(a), the plot of lnCij vs. − ln δη for a fixed
D value (0.4) of our data, reveals the independence of
Cij on the bin size δη, as expected from the α-model.
The horizontal dashed lines are fits through the average
values to facilitate observation. The independence of Cij

on the bin size δη has also been tested for D = 0.8 and
is shown in Fig. 2(b). We thus observe that the features
of the α-model – the δη-independence and power like D-

Fig. 3. Plot of φij with (i× j) for (a) δη = 0.1, (b) δη = 0.13,
(c) δη = 0.2, (d) δη = 0.4
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Table 2. Comparison of φ2 with slope values of φij versus
(i × j) plots for different pseudorapidity bin widths

δη ∆φij/∆(i × j) 〈∆φij/∆(i × j)〉 φ2

0.4 0.111± 0.080
0.2 0.109± 0.060 0.102± 0.032 0.105± 0.018
0.13 0.092± 0.050
0.1 0.094± 0.061

Fig. 4. Plot of lnF2 against − ln δη

dependence of FCs, are present as essential contents in
our data and Fig. 2(a–b) thus speak in favour of the α-
model. Similar observations have also been reported by the
NA22 Collaboration [14] for π+p and k+p interaction at
250A GeV and EMC Collaboration [15] for muon-proton
interaction at 280 GeV. The exponent φij are expected to
follow the simple relation [1]:

φij = ϕi+j − φi − φj = ijφ2, (7)

where the first equality sign is due to the α model and the
second to the log-normal approximation [16]. The second
part actually connects all φij ’s to the lowest order (or-
der two) intermittency exponent which can be determined
with least amount of error for any experimental data set.
The log normal approximation suggests that φij should
rise linearly with the product (i × j) and the slope of the
curves (φij vs. i × j) should be equal to the second order
intermittency exponent. This is verified by plotting φij as
a function of the product (i×j) for different bin widths in
Fig. 3(a–d). It is observed from Table 2 that the value of
intermittency exponent of the second order (φ2) and the
slopes of the curves (Fig. 3(a–d)) i.e. ∆φij/∆(i× j) are in
good agreement with each other reflecting the validity of
log normal approximation in our data set. φ2 value is ob-
tained from Fig. 4 by the best fit of lnF2 against − ln δη.
The F2 values have been evaluated using the (2).

It has been correctly pointed out by Ochs et al. [17,
18] that the real event occurs in three dimensional phase
space and its one dimensional projection may reduce or
even obliterate the sign of intermittent behaviour. It is
not possible to confirm if a system has an intermittent
behaviour by probing into one dimensional space only.
The “intermittency”-“nonintermittency” ambiguity prob-
lem has fortunately been resolved successfully by Seixas

Fig. 5. Verification of the scaling law (10)

[19] who found a dimension-independent relation that can
be used as an appropriate tool for identifying intermittent
pattern of fluctuation.

Now both F11 and F2 may be represented as [19,20]

F11(D) =

∫ δ

0
dη1

∫ δ+D

D
dη2ρ2(η1, η2)(∫ δ

0
ρ1(η1)dη1

) (∫ δ+D

D
ρ1(η2)dη2

) (8)

F2(δ) =

∫ δ

0
dη1

∫ δ

0
dη2ρ2(η1, η2)[∫ δ

0
ρ1(η1)dη1

]2 (9)

are integrals over the two particle correlation function
ρ2(η1, η2), the region of integration being different and
δ is the bin width as defined earlier. For F11, correlation
function is integrated over two regions of size δ separated
by D. If we project any three dimensional process to one
dimension, it will have the same consequences on both F11

and F2. So any relation connecting F11 and F2 will have
nothing to do with the dimension at which the relation
is framed. Seixas [19] worked out the simple dimension-
independent relation of the form

F11(D) = 2F2(δ = 2D)− F2(δ = D).

This can also be written as

C11(D) = 2F2(δ = 2D)− F2(δ = D). (10)

It may be mention that generally Cij is the function of D
and δ. The scaling law holds for a particular value of δ. So
here Cij is the function of D only. In the light of the scaling
relation (10), we present our data in Fig. 5. While the open
circles indicate the experimental C11 values, the stars the
calculated ones using (10). The consistency of the data
with the scaling behaviour and conformity with the results
obtained in NA22 experiment [14] are well vindicated by
the figure.

In conclusion, we observe: (i) Factorial correlators
show a power like dependence on the separation distance
D for D < 1, as expected from the α-model and are inde-
pendent of bin width when D is small (D < 1). This how-
ever should not be considered as upholding the unique-
ness of α-model as other models with short-range order
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also make similar predictions. (ii) Validity of the dimen-
sion independent scaling relation (10) between factorial
moments and correlators confirms the intermittent nature
of particle production of our data sample.
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